

全球领先的物联网终端及无线数据方案提供商

美格智能模块 Android RIL 适配指导

受控版本: V3.8

发布时间: 2022 年 12 月 06 日

美格智能技术股份有限公司 MEIG SMART TECHNOLOGY CO., LTD

重要声明

版权声明

版权所有: 美格智能技术股份有限公司

本资料及其包含的所有内容为美格智能技术股份有限公司所有,受中国法律及适用之国际公约中有关著作权法律的保护。未经美格智能技术股份有限公司书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。

不保证声明

美格智能技术股份有限公司不对此文档中的任何内容作任何明示或暗示的陈述或保证,而且 不对特定目的的适销性及适用性或者任何间接、特殊或连带的损失承担任何责任。

保密声明

本文档(包含任何附件)包含的信息是保密信息。接收人了解其获得的本文档是保密的,限 用于规定的目的外不得用于任何目的,也不得将本文档泄露给任何第三方。

免责声明

本公司不承担由于客户不正常操作造成的财产或者人身伤害责任。请客户按照手册中的技术 规格和参考设计开发相应的产品。在未声明之前,本公司有权根据技术发展的需要对本手册 内容进行更改,且更改版本不另行通知。

修订记录

版本号	日期	修订内容
V1.0	2020-03-01	初次建立
V2.0	2020-05-15	添加 Android8.x 和所有模块的通用配置
V3.0	2020-06-01	添加 Android7.0,10.0 支持 添加 gps 功能启用方法 添加 hidl 和 sepolicy 配置方法
V3.1	2020-06-04	完善 GPS 配置方法
V3.2	2020-06-20	添加 Android5.0, Android6.0, IPv6 设置和验证方法
V3.3	2020-07-31	添加 SIM 卡热插拔配置方法
V3.4	2021-01-11	 1.添加网口驱动(GobiNet&NCM)源码集成编译方法 2.添加 5G 速率优化方法 3.添加 SIM 卡热插拔配置方法 4.添加 APGS 启用说明 5.添加 ril 中所有属性使用说明 6.添加模块 log 抓取方法
V3.5	2022-03-09	添加U系列模块适配
V3.6	2022-05-31	适配 U 系列模块 NCM 拨号
V3.7	2022-06-23	1.所有"美格模块"修改为"美格智能模块"2.热插拔描述删除表一中"热插拔"一列
V3.8	2022-12-06	 1.更新所有模块端口定义及说明 2.调整所有模块端口适配方法,新增A系列模块端口适配方法 3.新增PPP,GobiNet,NCM,ECM,RNDIS驱动适配方法 4.补充Android10及以上版本hidl适配方法 5.更新网络相关配置 6.调整所有章节结构 7.修正AGPS错误 8.更新拨号上网方式选择部分 9.更新属性支持列表 10.常见问题中新增驱动检查和典型不拨号问题分析方法 11.更新所有章节中引用代码样式

Ħ	<u> </u>
Ħ	X

重要	医声明		1
修订	「记录		2
目:	录		3
表格	客了		5
图片	┟索引		6
1	引言		7
	1.1 文档	目的	7
	1.2 内容	一览	7
2	模块基本信	息	8
	2.1 模块	端口定义	8
	2.2 子端	口说明	9
3	RIL 适配		10
	3.1 添加	USB 串口驱动	10
	3.1.1	内核配置打开相应宏	10
	3.1.2	修改 OPTION 驱动,添加模块支持	10
	3.1.3	添加 USB 设备节点权限	12
	3.1.4	编译并更新内核	13
	3.2 添加	RIL 配置	13
	3.3 添加	网口驱动	14
	3.3.1	集成 PPP 驱动	14
	3.3.2	集成美格 GobiNet&NCM 驱动	15
	3.3.3	原生 NCM 驱动支持	16
	3.3.4	RNDIS 驱动支持	17
	3.3.5	ECM 驱动支持	18
	3.4 添加	sepolicy 权限	19
	3.5 添加	HIDL 配置	20
	3.6 添加	网络相关配置	22
4	低版 ANDR	COID 5G 支持	24
	4.1 Andr	oid9.0 添加 5G 支持	24
	4.2 Andr	oid8.0 添加 5G 支持	25
	4.3 5G 速	速率适配	25
5	GPS 功能支	5持	27
	5.1 配置	HAL	27
	5.2 启用	模块 GPS	27
	5.3 AGP	S 配置	28
6	RIL 扩展特	性	29
	6.1 SIM	卡热插拔支持	29
	6.2 IPV6	功能验证	29
	6.2.1	IPv6 配置	29
	6.2.2	命令方式验证	30
	6.2.3	Web 方式验证	30
	6.3 拨号	上网方式选择	31

MEIG

		6.3.1	自动选择	31
		6.3.2	固定配置	31
7	RIL	属性支持	寺列表	
8	常见	门题分	析	34
	8.1	抓取E	日志	34
	8.2	模块制	犬态查看	35
		8.2.1	是否检测到模块端口	35
		8.2.2	SIM 卡是否在位	
		8.2.3	信号检查	
		8.2.4	注网检查	
	8.3	驱动力	□载失败问题	
		8.3.1	usb 连接检查	
		8.3.2	usb 串口驱动检查	
		8.3.3	网卡驱动检查	37
		8.3.4	驱动匹配检查	
	8.4	不拨号	号问题	
		8.4.1	HAL 通信未建立	
		8.4.2	权限问题	
		8.4.3	未匹配到有效 APN	
		8.4.4	数据开关未使能	40

表格索引

《 Ⅰ 大怕日肥厌坏/ 即师□坦□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
表 2 子端口说明	9
表 3 Android9.0 补丁文件列表	24
表 4 Android8.0 5G 补丁文件	25
表 5 RIL 属性支持列表	
表 6 常见日志标签	

图片索引

图	1	端口信息	13
图	2	适配文件列表	13
图	3	启用 GPS	27
图	4	AGPS 配置	28
图	5	APN 设置	30
图	6	IPv6 PING	30
图	7	IPv6 测试	31

1 引言

1.1 文档目的

本文档介绍如何在 Android 系统上集成美格智能 RIL(Radio Interface Layer)库, GPS 库,以及相关配 置文件的修改。主要面向 FAE、Android 开发人员,引导其快速适配美格智能模块到设备上,以给设备提 供数据,语音,短信等电信业务。

1.2 内容一览

本文共分为以下几部分:

- 第1章: 主要介绍文档目的、章节描述等;
- 第2章: 描述模块基本信息;
- 第3章: RIL 及驱动适配说明;
- 第4章: 低版本 ANDROID 5G 支持;
- 第5章: GPS 功能添加方法;
- 第6章: RIL 扩展特性;
- 第7章: RIL 属性支持列表;
- 第8章:常见问题分析方法;

2 模块基本信息

本文介绍的模块都是通过 usb 与 Android 上位机进行通信的, 并且使用复合设备驱动虚拟出多个子 端口, 各个端口实现不同的子功能。

2.1 模块端口定义

此文档适用于如下表格中所列出的模块,部分模块会有多种不同的 PID:

表 1 美格智能模块产品端口组合信息

美格智能	能模块产品	品端口组合信息		
VID	PID	端口组合	系列	模块列表
05C6	F601	DIAG, MODEM, AT, NMEA, ADB, [RMNET/ECM]		LTE: SLM750x/SLM730x
2DEE	4D22	DIAG, MODEM, AT, NMEA, ADB, RMNET		
2DEE	4D23	DIAG, MODEM, AT, NMEA, ADB, ECM	Q	LTE: SLM868x/SLM820x/MA800x 5G: SRM815x/SRM825x/SLM826x
2DEE	4D38	RNDIS, DIAG, MODEM, AT, NMEA, ADB	-	
2DEE	4D50	ECM, DIAG, MODEM, AT, LOG, ADB		
2DEE	4d51 🌑	RNDIS, DIAG, MODEM, AT, LOG, ADB	U	5G: SRM811x/SRM821x/SRM810x
2DEE	4d52	NCM, DIAG, MODEM, AT, LOG, ADB		
2DEE	4D57	RNDIS, DIAG, MODEM, AT, NMEA, [UAC]	. ^	
2DEE	4D58	ECM, DIAG, MODEM, AT, NMEA, [UAC]	A	
	4020	NCM, AT, DIAG, 3G DIAG, MODEM	Ц	
ZUEE	4020	DIAG, AT, 3G DIAG, MODEM, ECM	п	LIL. SLWIIBOX

● 表中 VID(Vendor ID)、PID(Product ID)以及端口组合的顺序信息,在适配 usb 驱动时会用到。

● 表中"[]"括起来的部分表示可以通过 AT 命令动态开启或关闭。

MEIG

● 一般情况下,除个别模块外,模块的 PID 与 USB 端口组合信息一一对应。如:知道模块的 VID:2DEE, PID:4D22,就可以确认端口顺序是 "DIAG, MODEM, AT, NMEA, ADB, RMNET"。

● 我们将模块分为Q、U、A、H四个系列,每个系列在适配时候的主要特性是一致的,后文中会有提到。

2.2 子端口说明

虚拟出来的各个子端口主要用来实现 AT 命令收发、网络通信、GPS、诊断等功能,详细见下表:

表 2 子端口说明

端口	功能说明
MODEM	用于 PPP 拨号
AT	用于收发 AT 命令
NMEA	上报 nmea 数据,用于 gps 功能
ADB	adb 调试端口,功能默认被禁用
RMNET	 网口,仅在高通方案的模块上支持; 拨号后获取的是从运营商处分配的公网 IP;
ECM	 网口, Linux 下免驱, Windows 不支持。 一般获取的是局域网 IP, 如 192.168.200.3; 占用 2 个端口,数据+控制;
NCM	 网口 Linux 平台上: H系列模块需要用美格提供的专用 ncm 驱动, 其他模块直接使用内核自带的 ncm 驱动即可。 Windows 平台: 所有模块均需要安装美格提供的驱动。 拨号后获取的是从运营商处分配的公网 IP; 占用2个端口,数据+控制; 网口,Linux/Windows 下都免驱。
RNDIS	 ● 一般获取的是局域网 IP, 如 192.168.200.3 ● 占用 2 个端口,数据+控制;
DIAG、LOG、3G DIAG	获取模块日志,诊断问题使用
UAC	 ● 实现音频控制、传输功能, Linux/Windows 都免驱 ● 占用3个端口,数据收发+控制;

3 RIL 适配

RIL 主要使用 AT 来和模块交互, AT 通信需要借助于 USB 串口驱动。同样的, MODEM,, NMEA, DIAG 口等都需要加载 USB 串口驱动才能工作。

3.1 添加 USB 串口驱动

3.1.1 内核配置打开相应宏

CONFIG_USB_SERIAL_GENERIC=y CONFIG_USB_SERIAL_OPTION=y CONFIG_USB_SERIAL_QT2=y

3.1.2 修改 OPTION 驱动,添加模块支持

4.17 及以上版本内核修改方法:

drivers/usb/serial/option.c @@85,6_+85,13_@@_static_int #define HUAWEI_PRODUCT_K3765 #define HUAWEI_PRODUCT_K4605 #define HUAWEI_PRODUCT_E17356	option_probe(struct usb_ser 0x1465 0x14C6 0x1C07	rial *s	serial	,		
<pre>#define MEIG_VENDOR_ID #define MEIG_QCM_VENDOR_ID #define MEIG_QCM_PRODUCT_Q #define MEIG_PRODUCT_Q #define MEIG_PRODUCT_Q_ECM #define MEIG_PRODUCT_U_RNDIS #define MEIG_PRODUCT_U_ECM #define MEIG_PRODUCT_U_RNDIS #define MEIG_PRODUCT_U_NCM #define MEIG_PRODUCT_A_RNDIS #define MEIG_PRODUCT_A_ECM</pre>	0x2DEE 0x05C6 0xF601 0x4D22 0x4D23 0x4D38 0x4D20 0x4D50 0x4D51 0x4D51 0x4D52 0x4D57 0x4D58					
<pre>#define QUANTA_VENDOR_ID #define QUANTA_PRODUCT_Q101 @@ -564,6 +571,12 @@ static in</pre>	0x0408 0xEA02 t option_probe(struct usb_s	serial	*seri	al,		
static const struct usb_devic	e_id option_ids[] = {					
<pre>//H series { USB_VENDOR_AND_INTERF { USB_VENDOR_AND_INTERF { USB_VENDOR_AND_INTERF { USB_VENDOR_AND_INTERF { USB_VENDOR_AND_INTERF</pre>	ACE_INFO(MEIG_VENDOR_ID, 0x ACE_INFO(MEIG_VENDOR_ID, 0x ACE_INFO(MEIG_VENDOR_ID, 0x ACE_INFO(MEIG_VENDOR_ID, 0x ACE_INFO(MEIG_VENDOR_ID, 0x	xff, 0x xff, 0x xff, 0x xff, 0x xff, 0x	03, 02 03, 02 03, 02 03, 02 03, 02	x03) x13) x01) x12) x14)	· · · · ·	//3g app //app //modem //at //gprs
<pre>{ USB_VENDOR_AND_INTERF { USB_VENDOR_AND_INTERF { USB_VENDOR_AND_INTERF</pre>	ACE_INFO(MEIG_VENDOR_ID, 0x ACE_INFO(MEIG_VENDOR_ID, 0x ACE_INFO(MEIG_VENDOR_ID, 0x	xff, 0x xff, 0x xff, 0x	02, 0 02, 0 02, 0	x03) x13) x01)	······	//3g app //app //modem

{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x12) }, //at
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x14) }, //gprs

{ USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_Q), .driver_info = RSVD(4) | RSVD(5) | RSVD(6) | RSVD(7) }, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_Q_ECM), .driver_info = RSVD(4) | RSVD(5) | RSVD(6) | RSVD(7)}, { USB_DEVICE(MEIG_QCM_VENDOR_ID, MEIG_QCM_PRODUCT_Q), .driver_info = RSVD(4) | RSVD(5) | RSVD(6) | RSVD(7) | RSVD(8) | RSVD(9)}, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_Q_RNDIS), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) | RSVD(9)}, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_RNDIS), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) | RSVD(9)}, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_ECM), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) | RSVD(9)}, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_ECM), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) | RSVD(9)}, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_NCM), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) | RSVD(9)}, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_A_RNDIS), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) }, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_A_RNDIS), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) }, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_A_ECM), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) }, { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_A_ECM), .driver_info = RSVD(0) | RSVD(1) | RSVD(6) | RSVD(7) | RSVD(8) },

4.17 以下版本内核修改方法:

```
kernel/drivers/usb/serial/option.c
                          static void option_instat_callback(struct urb *urb);
 #define HUAWEI_PRODUCT_K4605
                                                            0x14C6
 #define HUAWEI_PRODUCT_E173S6
                                                            0x1C07
#define MEIG_VENDOR_ID
                                                            0x2DEE
#define MEIG_QCM_VENDOR_ID
                                                            0x05c6
#define MEIG_QCM_PRODUCT_Q
#define MEIG_PRODUCT_Q
                                                            0xF601
                                                            0x4D22
#define MEIG_PRODUCT_Q_ECM
                                                            0x4D23
                                                            0x4D38
#define MEIG_PRODUCT_Q_RNDIS
#define MEIG_PRODUCT_H
                                                            0x4D20
#define MEIG_PRODUCT_U_ECM
#define MEIG_PRODUCT_U_RNDIS
                                                            0x4D50
                                                            0x4D51
#define MEIG_PRODUCT_U_NCM
                                                             0x4D52
#define MEIG_PRODUCT_A_RNDIS
                                                            0x4D57
#define MEIG_PRODUCT_A_ECM
                                                            0x4D58
#if (LINUX_VERSION_CODE < KERNEL_VERSION( 3,10,0 ))
#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
    .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \</pre>
           USB_DEVICE_ID_MATCH_VENDOR,
     .idVendor = (vend), \
.bInterfaceClass = (cl), \
.bInterfaceSubClass = (sc),
.bInterfaceProtocol = (pr)
 #endif
@@ -701,13 +700,23 @@ static const struct option_blacklist_info yuga_clm920_nc5_blacklist
= {
         .reserved = BIT(1) \mid BIT(4),
}:
```

MEIG

```
}:
static const struct option_blacklist_info meig_q_blacklist = {
    .reserved = BIT(4) | BIT(5) | BIT(6)|BIT(7),
           }:
static const struct option_blacklist_info meig_q_rndis_blacklist = {
                .reserved = BIT(0) | BIT(1) | BIT(6) | BIT(7) | | BIT(8),
           3:
static const struct option_blacklist_info meig_a_blacklist = {
    .reserved = BIT(0) | BIT(1) | BIT(6)|BIT(7)||BIT(8),
           3:
static const struct usb_device_id option_ids[] = {
           //H series
            { USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x03, 0x03) },
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x03, 0x13) },
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x03, 0x01) },
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x03, 0x12) },
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x03, 0x14) },
                                                                                                                                   //3g app
                                                                                                                                    //app
                                                                                                                                   //modem
                                                                                                                                    //at
                                                                                                                                  //gprs
               USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x03)
USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x13)
                                                                                                                                    //3g app
                                                                                                                               }, //app
            { USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x01) }, //apde
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x12) }, //at
{ USB_VENDOR_AND_INTERFACE_INFO(MEIG_VENDOR_ID, 0xff, 0x02, 0x14) }, //gprs
                                                                                                                              }, //modem
           { USB_DEVICE(MEIG_QCM_VENDOR_ID, MEIG_QCM_PRODUCT_Q),
  .driver_info = (kernel_ulong_t)&meig_q_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_Q),
   .driver_info = (kernel_ulong_t)&meig_q_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_Q_ECM),
   .driver_info = (kernel_ulong_t)&meig_q_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_Q_RNDIS)
                 .driver_info = (kernel_ulong_t)&meig_q_rndis_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_RNDIS),
   .driver_info = (kernel_ulong_t)&meig_u_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_ECM),
   .driver_info = (kernel_ulong_t)&meig_u_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_U_NCM),
   .driver_info = (kernel_ulong_t)&meig_u_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_A_RNDIS),
   .driver_info = (kernel_ulong_t)&meig_a_blacklist },
           { USB_DEVICE(MEIG_VENDOR_ID, MEIG_PRODUCT_A_ECM)
                 .driver_info = (kernel_ulong_t)&meig_a_blacklist },
```

3.1.3 添加 USB 设备节点权限

Android 设备通常都会有一个 uevent.rc 文件用于配置设备节点权限,我们需要在此处给 ril 读写的设备加上 radio 权限,如

common/products/mbox/ue	eventd.	amlogic.rc	
/dev/ttyHS2 /dev/ttyS20	0666 0664	bluetooth system	bluetoot system
/dev/ttyUSB*	0664	radio	radio
#如果用gobinet驱动 /dev/qcqmi* #如果用PPP方式	0664	radio	radio
/dev/ppp	0664	radio	vpn

3.1.4 编译并更新内核

也可以编译出 option.ko 在使用 insmod 命令加载。

驱动加载后,如插入Q系列模块时,dev目录会生成4个ttyUSB串口设备:

kvim:/ # ls	5 -	la /de	ev/ttyl	JSB*				
crw-rw-r	1	radio	radio	188,	0	2020-04-16	09:41	/dev/ttyUSB0
crw-rw-r	1	radio	radio	188,	1	2020-04-16	09:41	/dev/ttyUSB1
crw-rw-r	1	radio	radio	188,	2	2020-04-16	10:16	/dev/ttyUSB2
crw-rw-r	1	radio	radio	188,	3	2020-04-16	09:41	/dev/ttyUSB3

图 1 端口信息

3.2 添加 RIL 配置

如果当前平台已经配置过 RIL,且能正常工作,则可以跳过此节,直接使用 Meig_Android_Driver_XXX. tar.gz 中对应 android 版本的 ril 库替换当前运行的库文件即可。

为了便于集成 ril, gps 等功能,我们将需要的 ril 库文件、gps 库文件、apn 配置文件、驱动源码、日 志工具等都打包并集成到 mk 文件中,然后在目标 device 中通过 include 的方式包含进来即可。

1) 先将 Meig_Android_Driver_XXX.tar.gz 解压到 Android 源码根目录下 vendor/meig 目录,

i i	and and hand and some of 0 and date of
	android.nardware.gnss@1.0-service.rc
	buildinto.txt
	etc
	gps-4.4
	gps-5.0
\vdash	
\vdash	gps-7.0-later
\vdash	init.meig.radio.rc
\vdash	init.meig.radio.system.rc
\vdash	init.meig.radio.system_x64.rc
\vdash	init.meig.radio_x64.rc
\vdash	install_meigdrv
\vdash	libmeig-ril-4.4
	libmeig-ril-5.0
	libmeig-ril-6 0
	libmeig-ril-7 0-later
	meigdry
	meiglog
	maig nadio mk
	merg_rauto.mk
	IIIerg_rauro_x04.liik
	ppp
	readme.txt
F-	RIL功能支持列表.xlsx
	uninstall_meigdrv

图 2 适配文件列表

```
2) 在当前产品的 mk 文件中添加美格 ril 配置
```

配置时注意区分 64 位和 32 位。

如:device/khadas/kvim/kvim.mk:

3) Android6.0 及以下版本, 需要额外添加如下配置

将 init.meig.radio.rc 文件包含在在对应 device 的 rc 文件中。如:

```
device/samsung/manta/init.manta.rc
@@ -1,4 +1,5 @@
import init.manta.usb.rc
import init.meig.radio.rc
on init
start watchdogd
```

3.3 添加网口驱动

如果使用 PPP 方式拨号,可以跳过此节。

网口驱动主要有 PPP, ECM, GobiNet, NCM, RNDIS 几种, 我们的适配文件中提供了 Q 系列模块 的 GobiNet 驱动, 以及 H 系列模块的 NCM 驱动。

其他驱动 Android 内核源码中都有包含,且一般默认都有开启,无需额外配置;如未开启,后文会介 绍开启方法。

3.3.1 集成 PPP 驱动

美格智能模块基本上都支持 PPP 方式拨号上网。

一般情况下, android 内核中默认支持 PPP 驱动,并且 SYSTEM 分区也会会打包依赖的脚本,并且 我们提供的 meig_radio_xxx.mk 编译文件中也会打包 ppp 需要的脚本。

#VERSION: v2.0
#CREATE DATA: 2020/05/26
#meig ril ppp&apns&diagtool
PRODUCT_COPY_FILES += \
 vendor/meig/ppp/ip-down:system/etc/ppp/ip-down \
 vendor/meig/ppp/ip-up:system/etc/ppp/ip-up \
 vendor/meig/ppp/ip-up-vpn:system/etc/ppp/ip-up-vpn \
 vendor/meig/ppp/chat:system/bin/chat \

不过,有时候内核中的 PPP 支持并不完整,可能会有无法打开/dev/ppp 节点或者拨号后无法获取 IP 的问题,可参考如下方式在内核配置项中添加完整 PPP 驱动。

CONFIG_PPP=y CONFIG_PPP_FILTER=y CONFIG_PPP_MULTILINK=y CONFIG_PPP_ASYNC=y CONFIG_PPP_SYNC_TTY=y CONFIG_PPP_DEFLATE=y

3.3.2 集成美格 GobiNet&NCM 驱动

1) 添加美格驱动到内核源码

为了便于集成驱动到 Android 内核源码中,我们提供了一键集成脚本,会自动将 Q 系列的 GobiNet 驱动和 H 系列的 NCM 驱动集成到对应平台内核源码中,注意,需要使用下一节的宏使能驱动才算完成。

执行前需要先加上可执行权限,

chmod +x vendor/meig/install_meigdrv
chmod +x vendor/meig/uninstall_meigdrv

执行./vendor/meig/install_meigdrv.sh,传参为内核源码目录,执行后会内核源码目录下创建 meigdrv 驱动目录。以下是几种平台的添加方法

如 amlogic 方案的上位机平台:

```
./vendor/meig/install_meigdrv common
#提示:
meig driver installed
```

高通方案的上位机平台:

./vendor/meig/install_meigdrv kernel/msm-3.18

```
#提示:
meig driver installed
```

2) 使能美格 USB 网卡驱动

驱动默认会直接打包到内核里,如不关注驱动加载方式,可跳过这一步。

如果需要编译成模块,则在对应的内核配置文件中添加如下配置,编出驱动后通过 insmod 命令自行加载 ko 文件, 如高通上位机平台:

/kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

#Q系列模块Gobi驱动 CONFIG_MEIG_GOBINET=m

#H系列模块NCM驱动 CONFIG_MEIG_NCM=m

insmod GobiNet.ko
insmod meig_cdc_driver.ko

如果某个驱动不想编译到,可在对应的内核配置文件中添加如下配置:

#Q系列模块Gobi驱动 CONFIG_MEIG_GOBINET=y

#H系列模块NCM驱动 CONFIG_MEIG_NCM=y

3) 卸载美格 USB 网卡驱动

卸载同样需要在 Android 源码根目录执行脚本,./vendor/meig/install_meigdrv,传参为内核源码目录.

如 amlogic 方案的上位机平台:

./vendor/meig/uninstall_meigdrv common

meig driver unistalled

3.3.3 原生 NCM 驱动支持

对于 NCM 端口的模块,需要在上位机上使能此驱动。如果确认驱动已经支持了,可以跳过此步。

如不能确定可按如下步骤检查。

1) 检查是否已经支持 NCM 驱动

插入模块后使用"ifocnfig -a"命令查看是否有新增名称为"usbX"或"ethX"的网卡(X 网卡实际序号),有则表示已支持。

root@zhaopf-ubuntu:/# ifconfig -a

```
usb0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether a6:d5:26:84:81:7f txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

或者查看内核 log 中是否有 ncm 相关的打印,有打印说明驱动已经支持。

root@zhaopf-ubuntu:/# dmesg | grep ncm

[1048429.882474] cdc_ncm 1-8:1.0: MAC-Address: a6:d5:26:84:81:7f [1048429.883060] cdc_ncm 1-8:1.0 usb0: register 'cdc_ncm' at usb-0000:00:14.0-8, CDC NCM, a6:d5:26:84:81:7f

2) 添加 NCM 支持

当前内核默认未添加 NCM 驱动时,需要在内核配置文件中打开 NCM 驱动宏来添加,

方法一(建议)、打包到内核中,如高通上位机平台:

kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

CONFIG_MII=y CONFIG_USB_USBNET=y CONFIG_USB_NET_CDCETHER=y CONFIG_USB_NET_CDC_NCM=y

方法二、编译出 ko 模块, 单独加载:

/kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

CONFIG_MII=m CONFIG_USB_USBNET=m CONFIG_USB_NET_CDCETHER=m CONFIG_USB_NET_CDC_NCM=m

3.3.4 RNDIS 驱动支持

对于 RNDIS 端口的模块,需要在上位机上使能此驱动。如果确认驱动已经支持了,可以跳过此步。

如不能确定可按如下步骤检查,步骤与 NCM 驱动方法类似。

1) 检查是否已经支持 RNDIS 驱动

插入模块后使用"ifocnfig -a"命令查看是否有新增名称为"usbX"或"ethX"的网卡(X 网卡实际序号),有则表示已支持。

root@zhaopf-ubuntu:/# ifconfig -a

```
usb0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether a6:d5:26:84:81:7f txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

或者查看内核 log 中是否有 rndis 相关的打印,有打印说明驱动已经支持。

root@zhaopf-ubuntu:/# dmesg | grep -i rndis
[1047763.008189] usbcore: registered new interface driver rndis_host

2) 添加 RNDIS 支持

当前内核默认未添加 RNDIS 驱动时,需要在内核配置文件中打开 RNDIS 驱动宏来添加,

方法一(建议)、打包到内核中,如高通上位机平台:

kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

```
CONFIG_MII=y
CONFIG_USB_USBNET=y
CONFIG_USB_NET_CDCETHER=y
CONFIG_USB_NET_RNDIS_HOST=y
```

方法二、编译出 ko 模块,单独加载:

kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

```
CONFIG_MII=m
CONFIG_USB_USBNET=m
CONFIG_USB_NET_CDCETHER=m
CONFIG_USB_NET_RNDIS_HOST=m
```

3.3.5 ECM 驱动支持

对于 ECM 端口的模块,需要在上位机上使能此驱动。如果确认驱动已经支持了,可以跳过此步。

如不能确定可按如下步骤检查,与 NCM/RNDIS 驱动方法类似。

1) 检查是否已经支持 ECM 驱动

插入模块后使用"ifocnfig -a"命令查看是否有新增名称为"usbX"或"ethX"的网卡(X 网卡实际序号),有则表示已支持。

root@zhaopf-ubuntu:/# dmesg | grep cdc_ether

[1125114.340355] cdc_ether 1-8:1.0 usb0: register 'cdc_ether' at usb-0000:00:14.0-8, CDC Ethernet Device, 56:17:6f:80:fa:c6 [1125114.340391] usbcore: registered new interface driver cdc_ether

或者查看内核 log 中是否有 ecm 相关的打印,有打印说明驱动已经支持。

root@zhaopf-ubuntu:/# dmesg | grep cdc_ether

```
[1125114.340355] cdc_ether 1-8:1.0 usb0: register 'cdc_ether' at usb-0000:00:14.0-8, CDC
Ethernet Device, 56:17:6f:80:fa:c6
[1125114.340391] usbcore: registered new interface driver cdc_ether
```

2) 添加 ECM 支持

当前内核默认未添加 ECM 驱动时,需要在内核配置文件中打开 ECM 驱动宏来添加,

方法一(建议)、打包到内核中,如高通上位机平台:

kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

CONFIG_MII=y CONFIG_USB_USBNET=y CONFIG_USB_NET_CDCETHER=y

方法二、编译出 ko 模块, 单独加载:

/kernel/msm-5.4/arch/arm64/configs/vendor/lahaina_QGKI.config

CONFIG_MII=m CONFIG_USB_USBNET=m CONFIG_USB_NET_CDCETHER=m

3.4 添加 sepolicy 权限

Android 使用 selinux 对所有进程强制执行强制访问控制

libmeig-ril 库在使用 ppp 方式拨号时需要调用 pppd 和 chat 进程,

使用 Gobinet 拨方式号时需要读写/dev/qcqmiN 节点,因此都需要额外添加如下权限。

如下以 Android7-9 平台为例,其他平台可以参考。

配置 sepolicy 前,可以先检查下当前平台是否将 selinux 设为 permissive,如果是,则可以跳过这一步。查看方法:

adb shell getenforce

sepolicy 配置文件一般在 device/[实际平台]/common/sepolicy 目录,

如 rockchip 的 rild 相关权限配置文件 device/rockchip/common/sepolicy/rild.te

- (1) Android7.0 配置
- (2) Android8.0, 9.0, 10.0 配置

可参考如下方式配置

device/rockchip/common/sepolicy/file.te @@ -37,3 +37,6 @@ type sysfs_lcdc, fs_type, sysfs_type, mlstrustedobject; type aplog_data_file, file_type, data_file_type; type fuseblk, sdcard_type, fs_type, mlstrustedobject; type proc_ostype, fs_type, mlstrustedobject; #chat type chat_exec, exec_type, file_type; device/rockchip/common/sepolicy/file_contexts @@ -32,6 +32,8 @@ /radical_update(/.*)? u:object_r:ru_file:s0 /dev/rk_btusb u:object_r:rtkbt_device:s0 /dev/rk_btusb u:object_r:chat_exec:s0 /dev/rkand_sys_storage u:object_r:rext4_exec:s0 /dev/rkand_sys_storage u:object_r:rext4_exec:s0 device/rockchip/common/sepolicy/rild.te @@ -15,3 +15,11 @@ allow rild net_dns_prop:file { getattr open read }; allow rild rootfs:dir { open read }; allow rild oplox_exec:file { execute execute_no_trans getattr open read }; allow rild device:chr_file { read open write }; allow rild device:dir { open read }; allow rild device:file { execute getattr read open execute_no_trans }; allow rild system_file:file { execute_no_trans };

3.5 添加 HIDL 配置

对于 Android8.0 及以上版本, 需要配置 HIDL。

一般 device 下都有个宏 DEVICE_MANIFEST_FILE 配置了对应的 manifest.xml 文件,需要在此文件 中配置 radio 相关的 hidl, telephone 才能找到 radio service,否则 RIL 跑不起来。如

device/khadas/kvim/BoardConfig.mk:183:DEVICE_MANIFEST_FILE:=
device/khadas/common/products/mbox/manifest/manifest_aosp.xml

对于 Android8.x/9.x 在 manifest_aosp.xml 中添加如下内容即可

Android10 及以上版本:

```
common/products/mbox/manifest/manifest_aosp.xml
       </interface>
    </hal>
    <hal format="hidl">
      <name>android.hardware.radio</name>
      <transport>hwbinder</transport>
      <version>1.0</version>
      <interface>
          <name>IRadio</name>
          <instance>slot1</instance>
       </interface>
   </ha1>
   <hal format="hidl">
       <name>android.hardware.bluetooth</name>
       <transport>hwbinder</transport>
       <version>1.0</version>
```

在部分平台上需要同时调整兼容性矩阵的配置,否则编译不过,如:


```
<version>1.0-1</version>
      <interface>
          <name>IRadioConfig</name>
          <instance>default</instance>
      </interface>
   </ha1>
hardware/interfaces/compatibility_matrices/compatibility_matrix.5.xml
<name>android.hardware.radio</name>
<version>1.0-1</version>
      <interface>
         <name>IRadio</name>
          <instance>slot1</instance>
      </interface>
   </ha1>
   <hal format="hidl" optional="true">
      <name>android.hardware.radio.config</name>
      <version>1.0-1</version>
      <interface>
          <name>IRadioConfig</name>
          <instance>default</instance>
      </interface>
   </ha1>
```

其中 compatibility_matrix.N.xml 以平台实际使用的为准,如不确定,可全部都修改。

3.6 添加网络相关配置

在网络属性中添加移动网络支持,在配置文件 frameworks/base/core/res/res/values/config.xml,一般 在对应 device 下 overlay 掉这个配置,需要注意以 overlay 下的 config.xml 为准。

```
frameworks/base/core/res/res/values/config.xml
@@ -294,11 +294,11 @@
     @@ -496,7 +496,7 @@
     <integer-array translatable="false" name="config_tether_upstream_types">
         <item>1</item>
         <item>7</item>
         <item>0</item>
     </integer-array>
<!-- If the DUN connection for this CDMA device supports more than just DUN --> @@ -1754,7 \pm1754,7 @@
          PackageManager.FEATURE_TELEPHONY system feature, which is
     available on *any* device with a telephony radio, even if the
device is data-only. -->
<bool name="config_voice_capable">true</bool>
<!-- Flag indicating whether all audio streams should be mapped to
one single stream. If true, all audio streams are mapped to
@@ -1776,7 +1776,7 @@
     Note: Disable SMS also disable voicemail waiting sms,
cell broadcasting sms, and MMS. -->
<bool name="config_sms_capable">true</bool>
     <!-- Default SMS Application. This will be the default SMS application when
the phone first boots. The user can then change the default app to one
@@ -1794,7 +1794,7 @@
```


If true, this means that the device supports data connectivity through the telephony network. This can be overridden to false for devices that support voice and/or sms . --> <bool name="config_mobile_data_capable">true</bool>

4 低版 ANDROID 5G 支持

Android10 以下版本默认不支持 5G,为了便于低版本系统集成 5G 模块,我们提供了补丁,用于显示 5G 信号栏、图标,以及优化 5G 速率。如果确认当前模块不支持 5G,可跳过此章节。

这些补丁是基于通用 Android 系统生成,在部分平台上会有一些差异,需要客户参考修改。

补丁文件列表:

文件	说明
5g_patches_for_android9.x.tar.gz	android9.0 5G 支持补丁,基于 Amlogic S905X 平台生成
5g_patches_for_android8.x.tar.gz	Android8.0 5G 支持补丁

4.1 Android9.0 添加 5G 支持

解压 5g_patches_for_android9.x.tar.gz 后会看到如下文件,

表 3 Android9.0 补丁文件列表

Patches	文件说明
frameworks_base.patch	SystemUI 和 Frameworks
frameworks_opt_telephony.patch	Telephony service
hardware_ril.patch	ril service
打上补丁方法:	

cd frameworks/base
patch - p1 < frameworks_base.patch
cd frameworks/opt/telephony/
patch - p1 < frameworks_opt_telephony.patch
cd hardware/ril</pre>

patch -p1 < hardware_ril.patch

打完补丁,编译、升级软件后,注册 5G 网络后信号栏会出现 5G 图标,如果现实效果与实际平台不一致,可自行调整一下图标文件。

4.2 Android8.0 添加 5G 支持

解压补丁文件 5g_patches_for_android8.x.tar. Gz 得到 patch 文件:

表 4 Android8.0 5G 补丁文件

Patches	文件说明
add-for-meig-5g-device-support.patch	SystemUI 和 Frameworks 及 RIL

进入 Android 源码根目录, 打上补丁:

patch - p1 < add-for-meig-5g-device-support.patch</pre>

请注意,此 patch 文件是根据瑞芯微 ROC_RK3399_PC 8.1 平台生成,对于有的平台可能需要参考此 补丁手动合入。

至此 5G 图标显示功能添加完成, 需要注册上 5G 网络才能显示出来。

4.3 5G 速率适配

对于 5G 设备,因速率相比 4G 有很大提升,需要调大 Android 的 TCP buffer 大小才能体现出 5G 的 优势。修改之前请先完成图标添加,因为有依赖关系。具体修改方法如下:


```
frameworks/opt/telephony/src/java/com/android/internal/telephony/dataconnection/DataCo
nnection.java
```

```
@@ -760,6 +760,9 @@ public class DataConnection extends StateMachine {
    private static final String TCP_BUFFER_SIZES_LTE =
           "524288,1048576,2097152,262144,524288,1048576";
    private static final String TCP_BUFFER_SIZES_HSPAP=
"122334,734003,2202010,32040,192239,576717";
     private static final String TCP_BUFFER_SIZES_5G =
"2097152,6291456,16777216,512000,2097152,8388608";
    private void updateTcpBufferSizes(int rilRat) {
       String sizes = null;
@@ -827,6 +830,11 @@ public class DataConnection extends StateMachine {
              case ServiceState.RIL_RADIO_TECHNOLOGY_HSPAP:
                 sizes = TCP_BUFFER_SIZES_HSPAP;
                 break;
              case ServiceState.RIL_RADIO_TECHNOLOGY_NR5G:
                sizes = TCP_BUFFER_SIZES_5G;
                break;
              default:
                 // Leave empty - this will let ConnectivityService use the system default.
                 break;
```

5 GPS 功能支持

如果不需要 GPS 功能,或者当前模块不支持 GPS,可以跳过此节。

GPS 功能主要用来给 Android 上各种 APP 提供定位数据,适配的目的是将模块的 GPS 功能通过 USB NMEA 口、gps hal, 与 Android 的 gnss 服务对接起来。

5.1 配置 HAL

与 4.3 节添加 radio hidl 配置方法相同,Android8.0 及以上版本需要在对应的 manifest.xml 文件中添加 gnss 的 hidl 配置,如:

5.2 启用模块 GPS

如需启用 gps 支持,需要在对应的 meig_radio.mk 或 meig_radio_x64.mk 文件中,将宏 BUILD_WITH_MEIG_GPS 设为 true。

注意:如果 gps 实际端口或模块名称等与 gps_cfg.inf 中不一致,需要修改后再使用,编译后存放在系统目录/system/etc/下。

5.3 AGPS 配置

为提高 GPS 定位时的搜星速度,缩短定位时长,可以通过如下属性开启 AGPS 辅助定位,同时须进行 SUPL 配置。

```
PRODUCT_PROPERTY_OVERRIDES += \
    ril.agps.enable=true
```

配置文件添加 SUPL 配置信息:/system/etc/gps.conf,注意,该配置文件的 SUPL_HOST 和 SUPL_PORT 只需定义一次,文件内出现多处定义时,以第一处为准。

图 4 AGPS 配置

6 RIL 扩展特性

通用 ril 默认情况下可以支持大部分场景的使用,对于其他有特殊需求的用户,可按照如下方式进行适配

6.1 SIM 卡热插拔支持

一般情况下 SIM 卡热插拔功能是没有开启的,因为依赖于硬件设计是否支持。

如确认硬件是支持的,可通过设置属性来启用此功能.

ril.simhotplug.enable=true 用于启用热插拔,

ril.simhotplug.polarity 用于设置检测脚有效电平状态(与实际硬件一致), 0: 低有效, 1: 高有效。

当系统第一次启动时会将修改保存到模块里,模块再次上电时生效。配置方法如:

PRODUCT_PROPERTY_OVERRIDES += \
 ril.simhotplug.enable=true \
 ril.simhotplug.polarity=0

6.2 IPV6 功能验证

因部分用户比较关注 IPv6 功能,因此我们在这一节着重说明一下 IPv6 的配置和验证方法。 目前基本所有的美格智能模块都支持 IPv6 功能,实际使用时可以与我们 FAE 同事确认。

6.2.1 IPv6 配置

在系统设置中找到移动网络子项,并找到当前 APN 设置,

确保" APN 协议" 包含" IPv6",如不包含,可修改为" IPv4/IPv6"或者" IPv6",然后保存,即可 生效。

APN 协议 IPV4V6			
APN 漫游协议 IPv4			
APN 启用/停用 APN 已启用	k		
承载系统 未指定			
MVNO 类型			

6.2.2 命令方式验证

使用 ping6 命令 ping IPv6 地址来验证,已知如下地址可用:/

root@56iq	DS:/etc # ifconfig ppp0		
ррр0	Link encap:Point-to-Point Pro	otocol	
	inet addr:10.187.213.130 P-t	t-P:10.64.64.64 Mask:255.255.255.25	5
	inet6 addr: 240e:bf:d427:f0df	f:acb1:4d03:d9fc:c534/64 Scope: Glob	al
	inet6 addr: fe80::acb1:4d03:d	d9fc:c534/10 Scope: Link	
	UP POINTOPOINT RUNNING NOARP	MULTICAST MTU:1280 Metric:1	
	RX packets:47 errors:0 droppe	ed:0 overruns:0 frame:0	
	TX packets:95 errors:0 droppe	ed:0 overruns:0 carrier:0	
	collisions:0 txqueuelen:3		
	RX bytes:4113 TX bytes:6416		
root@56iq	DS:/etc # ping6 2001:da8:202:1	10::36	
PING 2001	:da8:202:10::36(2001:da8:202:1	10::36) 56 data bytes	
64 bytes	from 2001:da8:202:10::36: icmp	p_seq=1 ttl=46 time=200 ms	
64 bytes	from 2001:da8:202:10::36: icmp	p_seq=2 ttl=46 time=98.7 ms	
64 bytes	from 2001:da8:202:10::36: icmp	p_seq=3 ttl=46 time=86.6 ms	
^C			
2001:	da8:202:10::36 ping statistics		
3 packets	transmitted, 3 received, 0% p	packet loss, time 2002ms	
rtt min/a	vg/max/mdev = 86.621/128.648/2	200.561/51.091 ms	
root@56ig	DS·/etc #		
	图 6 IPv	v6 PING	

6.2.3 Web 方式验证

在浏览器中访问地址 http://www.test-ipv6.com/, 可以验证 IPv6 支持情况。

G www.test-ipv6	com	☆ \$
; 连接测试		(
要」對試現目」反並測试結果/單系我们	其他 IP+6 网站	服务由代码
此测试的原理: 你的测览器会试	图连接一系列 URL,结果成功与否能说明你的系统是否已准备好迎接 IPv6。	
点击查看 技术信息		
IPv4 域名连接测试	成功 (0.587s) 使用 ipv4	
IPv6 域名连接测试	成功 (0.824s) 使用 ipv6	
双栈域名连接测试	成功 (1.021s) 使用 ipv6	
双栈城名大数据包传输测试	成功 (0.930s) 使用 ipv6	
无域名 IPv4 连接测试	成功(0.740s)使用 ipv4	
无域名 IPv6 连接测试	成功 (2.013s) 使用 ipv6	
IPv6 大数据包传输测试	成功 (1.013s) 使用 ipv6	
测试运营商 DNS 是否接入 IPv6	成功 (1.923s) 使用 ipv6	
查询 IPv4 运营商	成功 (0.038s) 使用 ipv4 ASN 4134	
查询 IPv6 运营商	成功(0.068s)使用 ipv6 ASN 4134	

图 7 IPv6 测试

6.3 拨号上网方式选择

在 Android 平台上, 美格智能模块支持的拨号方式一般有 QMI(rmnet), NCM, ECM, RNDIS, PPP 等方式,

默认情况下, RIL 库会根据驱动加载情况优先选择速率最高的方式, 用户无需关注。

不过,对于某些需要固定为特定拨号方式的场景,如驱动加载过晚导致 RIL 未能识别到最佳驱动时, 也可以通过属性来配置。

6.3.1 自动选择

RIL 中自动选择拨号方式是的优先级如下:

- Q系列模块: QMI > ECM/RNDIS > PPP
- H/U 系列模块: NCM > ECM/RNDIS > PPP
- A 系列模块: ECM/RNDIS > PPP

6.3.2 固定配置

可以通过修改 meig_radio.mk 中的属性 ril.dail.mode 来强制设置成固定的拨号方式,对应的值为"qmi", "ncm", "ecm", "rndis", "ppp", 需要注意要和模块实际网口形态保持一致。

配置方法如下:

```
PRODUCT_PROPERTY_OVERRIDES += \
    ril.dial.mode=ppp
```

7 RIL 属性支持列表

为了满足用户各种不同的使用场景, RIL 中通过属性扩展了一些非通用功能, 可按如下方式来启用或 关闭。详细如下表:

表 5 RIL 属性支持列表

属性名称	取值范围	默认值	功能
persist.sys.meig.srvdomain	cs,ps,both	auto	锁注册域,开关飞行模式或者 重启后生效
persist.sys.meig.5gmode	sa,sansa,auto	both	锁注册域,开关飞行模式或者 重启后生效
ril.prefernet.disable	false,true	false	禁用网络优先级设置
ril.fixed.radiotech	同hardware / ril / include / telephony/ril.h 中 RIL_RadioTechnology 定 义,5G 取值 20	/ 无	仅调试使用,用于调试信号栏 显示,重启 ril 生效
ril.meig.need.attachapn	false,true	false	专网卡需要特定 APN 才能注 网的情况下开启此功能
ril.sleep.work	false,true	Q 系列二代模块: true; 其他:false	是否支持休眠唤醒功能,目前 仅 Q 系列模块支持
ril.sleep.enable	false,true	true	是否启用休眠唤醒功能(需要 先支持)
ril.meig.modem.reset	false,true	false	当 RIL 检测到不可恢复的错 误时设置此属性为 true, 无需 认为设置。 如果硬件设计上支持 gpio 复 位模块功能,可将属性变化与 复位 io 联动起来。
ril.simhotplug.polarity	1,0	1	sim 卡热插拔触发电平
ril.simhotplug.enable	false,true	false	是否启用 SIM 卡热插拔功能
ril.gps.enable 或 persist.vendor.ril.gps.enable	false,true	false	是否启用 gps
ril.agps.enable	false,true	false	是否启用 agps 辅助定位功能
ril.codec.reset	false,true	false	初始化时是否需要复位 codec

MEIG		美	格智能模块 Android RIL 适配指导
ril.dial.mode 或 ro.dial.mode	ppp,ncm,ecm,rndis,qmi, multiqmi	无	选择拨号方式
ril.ndismulti.num	0,1,2,3,4	0	多路 NDIS(QMI) 拨号的个数
ril.ndismulti.apn2			用于设置第2-4路 APN 名称, 第 1 路由系统设置不需要使 用属性。目前仅 Q 系列模块 支持持,需要配合 v1.4.3 及 以上版本 GobiNet 驱动使用
ril.ndismulti.apn3 ril.ndismulti.apn4	APN 字符串	无	如: ril.ndismulti.num=3
			ril.ndismulti.apn2="APN2" ril.ndismulti.apn3="APN3"
ril.debug.enable	false,true	false	打开调试 log
ril.use.csq	false,true	false	使用 AT+CSQ 方式上报信 号,5G 模块不可用此功能
sys.meig.modem.state	connected,disconnected	无	RIL 会根据模块连接状态变 更此属性值,无需人为设置, 可用于应用层获取模块状态
persist.ril.use.oldgobi	true,false	false	当 v5.0.0 及以上版本 RIL 配 合 v1.4.2 及以下版本 gobinet 驱动时候时使用此属性可解 决兼容性问题
persist.meig.ims.disable	true,false	false	禁用 ims 注册,目前仅对 Q 系列模块生效
ril.menusearch.enable	true,false	false	改善手动搜网结果,对于比较 关注手动搜网的用户可以设 为 true
persist.sys.meig.uacsample	9 -1,0,1	-1	-1:关闭 UAC 0:8K 采样率 1:16K 采样率

8 常见问题分析

8.1 抓取日志

通常分析拨号相关问题,我们只需要抓取 radio 日志即可。

RIL 日志:

```
#清除缓存日志,非必须
adb logcat -b radio -c
#将radio 日志导出到radio.txt文件
adb logcat -b radio -v time > radio.txt
```

常见日志标签说明:

表 6 常见日志标签

RIL RIL 库通用日志

RIL-AT RIL 库中 AT 收发日志

RIL-CM RIL 库中 Connection Manager 日志,使用 QMI 通信

RILC libril 库日志

RILJ framework 层 RIL.java 日志

系统日志:

对于 RIL 工作正常,但信号栏显示异常,或者拨号成功却不能上网的情况,则需要抓取系统的日志来 分析 APP、路由等工作情况

```
#清除缓存日志,非必须
adb logcat - b system - b main -c
#将系统日志导出到system.txt文件
adb logcat - b system - b main -v time > system.txt ''
```

模块日志:

对于模块本身问题,需要抓取模块的 log,一般不需要。

抓取模块日志时,需要先将 MeigLogTool 推到机器里,对于 Q 系列模块,需要使用-f 指定 mask 文件 其他模块则不用,如:

```
#Q系列模块
MeigLogTool -f /etc/meiglog.cfg -s /data/misc/meig
#其他模块
MeigLogTool -s /data/misc/meig
#取出日志
adb pull /data/misc/meig
```

如果已经集成了我们提供的 init.meig.radio*.rc 文件,可按如下方式抓取。

adb shell 到机器里去操作,或将属性操作进程到开发者选项里

#清除本地日志 setprop sys.meig.log.clear true

#开始抓取日志 setprop persist.sys.radio.log

停止抓取日志 setprop persist.sys.radio.log

#取出日志 adb pull /data/misc/meig

8.2 模块状态查看

8.2.1 是否检测到模块端口

Log 找那个过滤关键字" RIL-DEV",以确认是否有识别到模块,如:

```
D/RIL-DEV (
D/RIL-DEV (
D/RIL-DEV (
D/RIL-DEV (
                        1563): Get modem info
1563): version is * 2.0*
1563): Find idvendor=05c6, idProduct=f601
1563): Find port = ttyUSB2
                         1563):
1563):
                                       Find modem path=/sys/bus/usb/devices/1-1.3:1.1
 D/RIL-DEV
                                      Find model path=/sys/bus/usb/devices/1-1.3.1.1

Find port = ttyUSB1

Find net mode in path=/sys/bus/usb/devices/1-1.3:1.5

get_netif_mode_by_path=/sys/bus/usb/devices/1-1.3:1.5
 D'/RIL-DEV
                     \left( \left( \right) \right)
D/RIL-DEV
D/RIL-DEV
                         1563):
                         1563):
                         1563): Find net interface in path=/sys/bus/usb/devices/1-1.3:1.5
1563): didn't found net interface
1563): vid:05c6
 D/RIL-DEV
E/RIL-DEV
D/RIL-DEV
D/RIL-DEV
                         1563): pid:f601
 D/RIL-DEV
                         1563): at port:2
 D/RIL-DEV
                         1563):
                                      ppp port:1
 D/RIL-DEV
                         1563): net port:5
1563): solution:QCM
 D'/RIL-DEV
D/RIL-DEV
                         1563): net mode:ppp
1563): net: not 5G
D/RIL-DEV (1563): net: not 5G
D/RIL-DEV (1563): interface:ppp0
D/RIL-DEV (1563): at port:/dev/ttyUSB2
D/RIL-DEV (1563): modem port:/dev/ttyUSB1
```

8.2.2 SIM 卡是否在位

先在 log 里查找关键字"CPIN",以确认是否检测到 sim 卡,如:

AT> AT+CPIN? AT< +CPIN: READY

8.2.3 信号检查

然后查找关键字"CSQ",以确认天线是否插好。如:

AT> AT^HCSQ?

AT< ^HCSQ: 0,0,"LTE",54,14,52,186

注意: CSQ 不支持 5G 信号,5G 信号需要使用 HCSQ

8.2.4 注网检查

再查找关键字"COPS",以确认是否注网成功。如:

AT> AT+COPS=3,0;+COPS?;+COPS=3,1;+COPS?;+COPS=3,2;+COPS?

AT< +COPS: 0,0,"004300 003F",7 AT< +COPS: 0,1,"00 003F",7 AT< +COPS: 0,2,"46011",7

8.3 驱动加载失败问题

8.3.1 usb 连接检查

使用 lsusb 命令,可以查看 usb 连接是否正常,如果能查到模块的 vid&pid 信息,则正常,否则得检 查模块是否上电,或 usb 连接是否正常。

如下图中查到的是美格智能的 vid:2dee, pid: 4d57 的模块。

```
adb root
adb shell
lsusb
Bus 003 Device 003: ID 2dee:4d57 Marvell Mobile Composite Device Bus
```

8.3.2 usb 串口驱动检查

如果没有/dev/ttyUSB*设备,则需要检查 option 驱动是否加载,可以通过启过滤内核日志中是否有串口 相关打印来判断

adb root adb shell dmesg | grep option

[1001.363923] usbcore: registered new interface driver option

8.3.3 网卡驱动检查

网卡驱动检查方法详见 3.3 节驱动加载部分。

8.3.4 驱动匹配检查

驱动加载成功,不代表这驱动和模块端口匹配成功,只有匹配成功了才能正常工作。

查看是否匹配成功可以通过 lsusb -t 可以看到命令:

\$ lsusb Bus 002 Device 002: ID 8087:8000 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 002: ID 2dee:4d57 Marvell Mobile Composite Device Bus Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub #āg到2dee:4d57的模块再bus:003 device 003上 \$ lsusb -t /: Bus 04.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/10p, 480M /= Port 1: Dev 2, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 1: Dev 3, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 5: Dev 3, If 0, Class=Wireless, Driver=rndis_host, 480M Import 5: Dev 3, If 2, Class=Vendor Specific Class, Driver=option, 480M Import 5: Dev 3, If 3, Class=Vendor Specific Class, Driver=option, 480M Import 5: Dev 3, If 3, Class=Vendor Specific Class, Driver=option, 480M Import 5: Dev 3, If 5, Class=Vendor Specific Class, Driver=option, 480M Import 5: Dev 3, If 5, Class=Vendor Specific Class, Driver=option, 480M Import 5: Dev 3, If 5, Class=Human Interface Device, Driver=usbhid, 1.5M Import 9: Dev 4, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 9: Dev 4, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 9: Dev 4, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 9: Dev 4, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 9: Dev 4, If 0, Class=Human Interface Device, Driver=usbhid, 1.5M Import 1: Dev 1, Class=Human Interface Device, Driver=usbhid, 1.5M Import 1: Dev 1, Class=Hub, Driver=hub/6p, 480M Import 1: Dev 2, If 0, Class=Hub, Driver=hub/6p, 480M Import 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M Import 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M Import 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M Import 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M Import 1: Dev 2, If 0, Class=Hub, Driver=hub/4p, 480M

或者,在不支持 lsusb 命令的设备上使用 cat /sys/kernel/debug/usb/devices 节点查看:


```
adb root
adb shell
# cat /sys/kernel/debug/usb/devices
T: Bus=03 Lev=01 Prnt=01 Port=04 Cnt=02 Dev#= 3 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=ef(misc ) Sub=02 Prot=01 MxPS=64 #Cfgs= 1
P: Vendor=2dee ProdID=4d57 Rev= 1.00
S: Manufacturer=Marvell
S: Product=Mobile Composite Device Bus
S: SerialNumber=200806006809080000
C:* #Ifs= 6 Cfg#= 1 Atr=c0 MxPwr=500mA
A: FirstIf#= 0 IfCount= 2 Cls=e0(wlcon) Sub=01 Prot=03
I:* If#= 0 Alt= 0 #EPs= 1 Cls=e0(wlcon) Sub=01 Prot=03 Driver=rndis_host
E: Ad=87(I) Atr=03(Int.) MxPS= 64 Iv]=4096ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=rndis_host
E: Ad=83(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=Oc(O) Atr=O2(Bulk) MxPS= 512 Ivl=Oms
I:* If#= 2 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
E: Ad=82(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=Ob(O) Atr=O2(Bulk) MxPS= 512 Ivl=Oms
I:* If#= 3 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
E: Ad=88(I) Atr=03(Int.) MxPS= 64 Iv1=4096ms
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=Oms
E: Ad=Oa(O) Atr=O2(Bulk) MxPS= 512 Ivl=Oms
I:* If#= 4 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
E: Ad=89(I) Atr=03(Int.) MxPS= 64 Iv1=4096ms
E: Ad=86(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=Of(O) Atr=O2(Bulk) MxPS= 512 Ivl=Oms
I:* If#= 5 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=00 Prot=00 Driver=option
E: Ad=85(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=Oe(O) Atr=O2(Bulk) MxPS= 512 Ivl=Oms
```

#可以看到vid:2dee pid:4d22 每个If(Interface)驱动加载情况:0,1: rndis_host, 2-5:option

8.4 不拨号问题

8.4.1 HAL 通信未建立

一般是 manifest.xml 文件配置不正确,见 hal 配置章节描述。

或者 radio service 未启动导致, Android8 及以上版本可以查看机器里是否有如下服务

lahaina:/ # ps -ef grep android.hardware.radio				
system	956	1 0 10:00:55 ? 00:00:00 android.hardware.radio.config@1.0-service		
system	960	1 0 10:00:55 ? 00:00:00 android.hardware.radio@1.2-radio-service		
system	963	1 0 10:00:55 ? 00:00:00 android.hardware.radio@1.2-sap-service		

如果没启动可以当前项目对应的 mk 文件里添加进去

```
PRODUCT_PACKAGES += \setminus
```

android.hardware.radio@1.2-radio-service \ android.hardware.radio.config@1.0-service

8.4.2 权限问题

权限问题一般是没有权限读取设备节点

如/dev/ttyUSB*,或者/dev/qcqmi*不是 radio 权限,

或者 selinux 权限不够。

8.4.3 未匹配到有效 APN

从 radio log 中过滤出 AT+CIMI 的结果,前 6 位数字为 PLMN 值(如下是 460 11),根据此值去 apns-conf.xml 中搜索,看是否有默认 APN,如果没有则可以参考已支持的 APN 来添加。

12-05 06:51:19.030 408 408 D RIL-AT : AT> AT+CIMI 12-05 06:51:19.034 770 770 D CarrierKeyDownloadManager: Carrier not enabled or invalid values. mKeyAvailability=0 mURL=null 12-05 06:51:19.035 770 770 D CarrierKeyDownloadManager: Cleaning up existing renewal alarms 12-05 06:51:19.035 408 519 D RIL-AT : AT< 460110411576662 12-05 06:51:19.035 408 519 D RIL-AT : AT< OK

apns-conf.xml 中

```
<apn carrier="China Telecom" apn="CTLTE" mcc="460" mnc="11" user="ctnet@mycdma.cn"
password="vnet.mobi" server="" proxy="" port="" mmsproxy="" mmsport="" mmsc=""
type="default,hipri,supl" />
```

如果想临时更新 apns-conf.xml 文件来验证,则需要按如下优先级依次检查哪个文件存在,就修改哪 个文件。

#顺序越靠前优先级越高

- 1./data/misc/apns/apns-conf.xml
- 2./product/etc/apns-conf.xml
- 3./oem/etc/apns-conf.xml
- 4./system/etc/apns-conf.xml

修改后需要删除 telephone 数据库文件然后重启才能生效(如果是系统升级,则对应的需要进行一次恢复出厂)

adb root adb remount adb shell #删除数据库,重启设备后会根据 apns-conf.xml 新建 rm \$(find /data -iname "tele*.db*")

8.4.4 数据开关未使能

检查系统设置里的数据开关是否打开。